Q.1	Find the Fourier Series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.
Q.2	Expand $f(x) = x \sin x$ as a Fourier series in the interval $0 < x < 2\pi$.
Q.3	Find the Fourier series of $f(x) = 2x - x^2$ in the interval (0,3). Hence deduce that
	$\frac{1}{1} - \frac{1}{1} + \frac{1}{1} - = \frac{\pi^2}{2}$
	$1^2 2^2 3^2 \dots 12$
Q.4	Find the Fourier series of the function $f(x) = \begin{cases} x^2 & 0 \le x \le \pi \end{cases}$
	$\begin{bmatrix} -x^2 & -\pi \le x \le 0 \end{bmatrix}$
Q.5	$\int \pi x \qquad 0 < x < 1$
	Find the Fourier series of the function $f(x) = \begin{cases} 0 & x = 1 \end{cases}$. Hence show that
	$\pi(x-2) 1 < x < 2$
	$1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_$
	$1 - 3 + 5 - 7 + \dots - 4$
Q.6	Find the Fourier series of $f(x) = x^2$ in the interval $0 < x < a$, $f(x+a) = f(x)$.
Q.7	If $f(x) = \cos x $, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$,
	$f(x+2\pi) = f(x).$
Q.8	For the function $f(x)$ defined by $f(x) = x $, in the interval $(-\pi, \pi)$. Obtain the
	Fourier series. Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.
Q.9	Given $f(x) = \begin{cases} -x+1 & -\pi \le x \le 0 \\ x+1 & 0 \le x \le \pi \end{cases}$. Is the function even of odd ? Find the Fourier
	series for $f(x)$ and deduce the value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
Q.10	Find the Fourier series of the periodic function $f(x)$; $f(x) = -k$ when $-\pi < x < 0$
	and $f(x) = k$ when $0 < x < \pi$, and $f(x+2\pi) = f(x)$.
Q.11	Half range sine and cosine series of $f(x) = x(\pi - x)$ in $(0, \pi)$
Q.12	$(\pi r \ 0 < r < 1)$
	Find the Fourier series for the function $f(x) = \begin{cases} \pi(x, 0) < x < 1 \\ \pi(x-2) & 1 < x < 2 \end{cases}$
	(n(x-2), 1 < x < 2)
Q.13	Find the Fourier series for f(x) defined by f(x) = $x + \frac{x^2}{4}$ when $-\pi < x < \pi$ and
	f(x + 2 π) = f(x) and hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$

Maths – II

Q.14	Find the Fourier series for the function $f(x) = \begin{cases} x; 0 < x < 1 \\ 0; 1 < x < 2 \end{cases}$.
Q.15	If $f(x) = x \text{ in } 0 < x < \frac{\pi}{2}$
	$= \pi - x \text{ in } \frac{\pi}{2} < x < \frac{3\pi}{2}$
	$= x - 2\pi \text{ in } \frac{3\pi}{2} < x < 2\pi$
	Prove that $f(x) = \frac{4}{\pi} \left\{ \frac{\sin x}{1^2} - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \right\}$
Q.16	If $f(x) = \frac{x}{l}$ when $0 < x < l$
	$=\frac{2l-x}{l} \qquad \text{when } l < x < 2l$
	Prove that f(x) $\frac{1}{2} - \frac{4}{\pi^2} \left(\frac{1}{I^2} \cos \frac{\pi x}{l} + \frac{1}{3^2} \cos \frac{3\pi x}{l} + \frac{1}{5^2} \cos \frac{5\pi x}{l} + \dots \right)$
Q.17	When x lies between $\pm\pi$ and p is not an integer, prove that
	$\sin px = \frac{2}{\pi} \sin p\pi \left(\frac{\sin x}{1^2 - p^2} - \frac{2\sin 2x}{2^2 - p^2} + \frac{3\sin 3x}{3^2 - p^2} - \dots \right)$
Q.18	Find the Fourier series for the function $f(x) = e^{ax}$ in $(-l, l)$
Q.19	Half range sine and cosine series of $f(x) = 2x - 1$ in (0,1)
Q.20	Half range sine and cosine series of x^2 in $(0, \pi)$
Q.21	Find Half range sine and cosine series for $f(x) = (x-1)^2$ in $(0,1)$
Q.22	Evaluate: $L\{\sin 2t \cos 3t\}$, $L\{e^{-3t}(\cos 4t + \sin 2t)\}$

Q.23	Evaluate: $L\left\{\sin^2 2t\right\}, L\left\{e^{-2t}\cos 3t\right\}$
Q.24	Evaluate: $L\left\{\frac{\sin 2t - \sin 3t}{t}\right\}, L\left\{t\int_{0}^{t}e^{-4t}\sin 3tdt\right\}$
Q.25	Evaluate: $L^{-1}\left\{\log\left(\frac{s+1}{s-1}\right)\right\}, L^{-1}\left\{\frac{s^2+s+2}{s^5}\right\}$
Q.26	Evaluate: $L^{-1}\left\{\cot^{-1}\frac{s}{a}\right\}, L^{-1}\left\{\frac{s-1}{(s-1)^2+4}\right\}$
Q.27	Evaluate: $L^{-1}\left\{\log\left(\frac{s+2}{s+3}\right)\right\}, L^{-1}\left\{\frac{s+2}{\left(s^2+4s+5\right)^2}\right\}$
Q.28	Evaluate: $L^{-1}\left\{\frac{1+2s}{(s+2)^2(s-1)^2}\right\}, L^{-1}\left\{\frac{s^2+s+3}{s^6}\right\}$
Q.29	Evaluate: $L^{-1}\left\{\frac{(s+1)^2}{s^3}\right\}, L^{-1}\left\{\tan^{-1}\frac{s}{a}\right\}$
Q.30	Find the Laplace Transform of f(t), where
	(i) $f(t) = t$ if $0 < t < \frac{a}{2}$, $f(t + a) = f(t)$
	$= a - t \qquad if \frac{a}{2} < t < a$
Q.31	Find the Laplace transform of the function
	$f(t) = \begin{cases} \sin \omega t; 0 < t < \frac{\pi}{\omega} \\ 0; \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}, \qquad f(t) = f(t + \frac{2\pi}{\omega}) \end{cases}$
Q.32	Use convolution theorem to find the Laplace Inverse Transform of

-	
	(i) $\frac{sa}{(s^2 - a^2)^2}$ (ii) $\frac{s - 2}{s(s - 4s - 13)}$
Q.33	Use convolution theorem to find the Laplace Inverse Transform of
	(i) $\frac{s^2}{(2-2)(2-12)}$ (ii) $\frac{1}{2(-2)}$
	(s + a)(s - b) = s(s - 2)
Q.34	Find the value of the integral using Laplace Transform technique.
	(i) $\int_{0}^{\infty} t e^{-2t} \cos t dt$ (ii) $\int_{0}^{t} e^{-t} \frac{\sin t}{\sin t} dt$
	$ (i) \int_{0}^{1/2} t^{-2} \cos t dt $
Q.35	Solve the initial value problem $y'' + 5y' + 2y = e^{-2t}$, $y(0) = 1$, $y'(0) = 1$. Using Laplace
	transformation.
Q.36	Solve the following Differential Equations using Laplace Transform technique.
	$\frac{d^2x}{dt^2} - 2\frac{dx}{dt^2} + x = e^t \text{with} x = 2 \text{and} \frac{dx}{dt^2} = -1 \text{ at } t = 0$
	$dt^2 dt dt$
Q.37	Solve the following Differential Equations using Laplace Transform technique.
	$d^2 \mathbf{v}$ $\begin{bmatrix} \pi \end{bmatrix}$
	$\frac{dx}{dx^2} + y = 1 \qquad \text{with} \qquad y(0) = 1 \text{and} y\left\lfloor\frac{dx}{2}\right\rfloor = 0$
0.38	Solve the following equations :
	(a) $(D - 2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ (b) $(D^2 + D) y = x^2 + 2x + 4$
Q.39	Solve the following equations :
	(a) $(D^2 + 1) y = y^2 \cos y$ (b) $(D^2 + 1) y = e^{2x} + \cosh 2x + x^3$
	$(0) (D + 1)y = x (0)x \qquad (0) (D + 1)y = e^{-1} + (0)(12x + x)$
Q.40	Solve the following equations :
	(a) $(D^4 + 2D^2 + 1)y = x^2 \cos^2 x$ (b) $(D^2 + 2)y = e^{-2x} + \cos 3x + x^2$
Q.41	Solve the following equations :

Maths – II

	(a) $(D^2 + 2D + 1) y = x e^x sinx$ (b) $(D^2 - 9) y = e^{3x} cos 2x$
Q.42	Solve the following equations :
	(a) $(D - 2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ (b) $(D^3 + 8) y = x^4 + 2x + 1$
Q.43	Solve the following equations :
	(a) $(D^2 - 1) y = x \sin 3x + \cos x$ (b) $(D^2 - 4D + 4) y = 2e^x + \cos 2x + x^3$
Q.44	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$.
Q.45	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + y = ((\log x) \sin(\log x) + 1)/x$
Q.46	Solve: $(3x+2)\frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1.$
Q.47	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$.
Q.48	Solve: $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2 + 2\log x.$
Q.49	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} + y = \sec x$.
Q.50	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} + y = \tan x$.
Q.51	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$
0.52	12 1
ų.52	The charge q on a plate of a condenser C is given by $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E \sin pt$ the
	circuit is tuned to resonance so that $p^2 = \frac{1}{LC}$ if initially the current i and charge q

	be zero show that for small value of $\frac{R}{L}$,the current in the circuit at time t is given by
	$\left(\frac{Et}{2L}\right)\sin pt.$
Q.53	Solve the following simultaneous equations: $\frac{Dx + y = \sin t}{Dy + x = \cos t}$; where $D = \frac{d}{dt}$
	given that when t =0 ,x =1 and y = 0.
Q.54	Solve the following simultaneous equations: $\begin{array}{l} Dx + y = e^t \\ Dy + x = e^{-t} \end{array}$; where $D = \frac{d}{dt}$
Q.55	Form the partial differential equation of following:
	(a) $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ (b) $z = f(x+ct) + g(x-ct)$
Q.56	Form the partial differential equation of following:
	(a) $2z = a^2 x^2 + b^2 y^2$ (b) $z = x + y + f(xy)$
Q.57	Form the partial differential equation of following:
	(a) $z = (x^2 + a)(y^2 + b)$ (b) $F(xy+z^2, x + y + z) = 0$
Q.58	Solve following partial differential equations :
	(a) $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$ (b) $x(y - z)p + y(z - x)q = z(x - y)$
Q.59	Solve following partial differential equations :
	(a) $py + qx = pq$ (b) $z = px + qy + 2\sqrt{pq}$
Q.60	Solve following partial differential equations :
	(a) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos y + xy$ (b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \cos x \cos 2y$
Q.61	Solve following partial differential equations :

	(a) $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+4y}$ (b) $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^3 + e^{x+2y}$
Q.62	(a) Solve: $\frac{\partial^2 z}{\partial x \partial y} = e^{-y} \cos x$, given that $z = 0$ when $y = 0$ and $\frac{\partial z}{\partial y} = 0$ when $x = 0$
	(b) Solve: $\frac{\partial^2 z}{\partial x^2} = z$ given that $z = e^y$ and $\frac{\partial z}{\partial x} = e^{-y}$ when $x = 0$
Q.63	Solve: $\frac{\partial z}{\partial x} = 2\frac{\partial z}{\partial y} + z$ where z (x , 0) = 8 e ^{-5x} using method of separation of variables.
Q.64	Solve: $3\frac{\partial z}{\partial x} + 2\frac{\partial z}{\partial y} = 0$, where z (x, 0) = 4 e^{-x} by using method of separation of
	variables.
0.05	2 2
Q.65	Solve: $\frac{\partial z}{\partial x} = 4 \frac{\partial z}{\partial y}$ where z(0, y) = 8 e ^{-3y} using method of separation of variables.
Q.66	Find the series solution of the differential equation $x\frac{d^2y}{dx^2} + \frac{dy}{dx} + xy = 0$
Q.67	Attempt following.
	1) Express $f(x) = 4x^3 + 6x^2 + 7x + 2$ in terms of Legendre polynomial.
	2) Prove that $J_{\frac{-1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$
Q.68	Solve the following equation in power series $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$
Q.69	Attempt the following.
	(ii) Evaluate $J_{\frac{3}{2}}(x)$ (iii) Prove that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$
0.70	Attempt the following
ų.70	(i) StateRodrigue's formula for Legendre's polynomials. Show that
	$P_4(x) = \frac{1}{8} \left(35x^4 - 30x^2 + 3 \right)$
	(ii) Express J_4 in terms of J_0 and J_1 .

Maths – II

Q.71	Solve in series in differential equation $\frac{d^2y}{dx^2} + xy = 0$
Q.72	Solve in series in differential equation $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} - y = 0$
Q.73	solve in series the differential equation $\frac{d^2y}{dx^2} + 4y = 0$
Q.74	 (a) Find real root of the equation x³ + x² + 1=0 by using method of direct iteration correct up to three decimal places. (b) By using Newton –Raphson's get the real root of the equation xe^x - 2=0 correct up to two decimal places
Q.75	(a) Find the real root of the equation $x \log_{10} x - 1.2 = 0$ by false position method. (b) By using Newton –Raphson's get the real root of the equation $x = e^{-x}$ near $x = 0.5$ correct up to two decimal places.
Q.76	 (a) Using the method of iteration, find the roots of the equation x⁴-3x+1=0 x₀ = 1.5 correct to four decimal places. (b) Find a root of the equation x³-x-1=0 correct to three decimal places, using the bisection method.
Q.77	 (a) Find root of the equation xe^x = cos x correct to three decimal places using method of False-position. (b) Find root of the equation x³ - 3x + 5 = 0 correct to three decimal places using method of Newton-Raphson.